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Received 3 April 1989, in final form 7 February 1990 

Abstract. Monte Carlo calculations in the Gibbs ensemble are reported for pure quadrupolar 
Lennard-Jones fluids. The vapour-liquid equilibrium curves, critical temperatures, and 
critical densities are calculated for various quadrupolar strengths (e*’ = Q’/Eu’ = 1.0, 
1.5, 2.0 and 2.5). It is shown that as the quadrupolar strength increases both the critical 
temperature and the critical density increase. Comparison of the results for Q*’ = 2.0 with 
data from the available literature shows good agreement. 

1. Introduction 

Until recently it was an enormous and costly task to obtain a vapour-liquid coexistence 
curve for a model fluid using computer simulation techniques. The conventional method 
is to perform a number of simulations on various isotherms. For each state point the 
pressure is calculated and the chemical potential obtained by thermodynamic integration 
or by test particle methods [ 1,2] .  The densities of the coexisting liquid and vapour phases 
at a given temperature are obtained indirectly by equating the pressure and the chemical 
potential. Along these lines the vapour-liquid curves of, for example, the Lennard- 
Jones fluid [3] ,  quadrupolar Lennard-Jones fluid [4], and a two-centred Lennard-Jones 
fluid [5] have been calculated. 

Unfortunately, these indirect methods for calculating phase boundaries require 
many simulations. Therefore, data on vapour-liquid equilibria of model fluids are rather 
scarce, despite their importance for testing various liquid theories [6,7]. 

The reason why this cumbersome route is chosen is preference to a simulation of a 
system which contains a liquid in coexistence with a vapour is the relatively small number 
of particles which can be used in a simulation. For such a small number of particles the 
interface between the gas and liquid phase would dominate the properties of the system 
and therefore influence the bulk properties. 

A new simulation technique proposed by Panagiotopoulos [SI, which samples the 
Gibbs ensemble, allows the vapour-liquid coexistence curve to be simulated without 
the presence of an interface. Therefore data on vapour-liquid equilibria can be obtained 
from a relatively small number of particles and, equally important, from one single 
simulation. This method has already been used successfully to study the phase behaviour 
of the pure Lennard-Jones fluid [S-91 and mixtures of Lennard-Jones fluids [9]. 
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This article describes the application of Panagiotopoulos's method to calculate the 
vapour-liquid phase behaviour of pure quadrupolar Lennard-Jones fluids. The majority 
of existing computer simulation data for quadrupolar fluids have been performed in 
connection with the development of perturbation theories applicable to such fluids [4, 
10-131. Gupta and co-workers have recently demonstrated the importance of qua- 
drupolar interactions for the modelling of benzene [ 141 and naphthalene [ 151. In addition 
the influence of quadrupolar interactions on the properties of carbon dioxide has long 
been recognised. For a quadrupolar Lennard-Jones fluid the vapour-liquid curve has 
been determined previously by Shing and Gubbins 141 for Q** (= Q 2 / ~ a 5 )  = 2.0 using 
'test particle' methods for calculating the chemical potential and therefore provides an 
additional test of this new elegant technique. Furthermore, we have calculated the 
coexistence curves for other values of the quadrupolar strength Q* in order to obtain a 
more complete picture of the phase behaviour of these fluids. 

We continue with a short description of the Gibbs ensemble, followed by some 
computational details; finally, we present our results for the quadrupolar Lennard-Jones 
fluids studied. 

2. The Gibbs ensemble 

In his original articles Panagiotopoulos [8,9] introduced the Gibbs ensemble using 
fluctuation theory. Here we derive the acceptance rules using the partition function for 
this ensemble [16, 171. Formal proof of the equivalence of the Gibbs ensemble and the 
canonical ensemble in the thermodynamic limit can be found in reference [ 181. 

Consider a system at a constant volume (V), temperature (0, and number of particles 
( N ) ,  which is divided into two (separate) sub-systems labelled 1 and 2. The volumes of 
the two sub-systems are VI and V - VI,  and the numbers of particles in the respective 
sub-systems are N I  and N - N I .  In the partition function for the Gibbs ensemble one 
must take into account the number of possible distributions of N particles over the two 
sub-systems and allow for variations of the volumes in the sub-systems. This gives, for 
the partition function: 

where A is the thermal de Broglie wavelength, p = l / k , T ,  El  and E 2  are the scaled 
coordinates of the particles, and U(nJ is the intermolecular potential. 

The ensemble average of a functionf(EN) in this ensemble can be obtained from the 
partition function (1): 



Simulations of quadrupolar Lennard-Jones fluids 4283 

This equation represents an ensemble average with a probability distribution pro- 
portional to a pseudo-Boltzmann weight factor given by 

exp(-pW(ET1, @ - n l ,  n l ,  v,)) = exp[ln{N!/[nl!(N-nl)!]} 

+ n l  In V1 +(N-n,)ln(V-Vl)-~Ul(nl)-~U2(N-nl)]. (3) 
From this pseudo-Boltzmann factor the acceptance rules can be derived [16, 171. A trial 
configuration can be generated by displacing a particle, changing a sub-volume in such 
a way that the total volume remains constant, or changing the number of particles in a 
sub-volume while keeping the total number of particles constant. From the pseudo- 
Boltzmann weight factor ( 3 )  we obtain 

AW = W(EYl, n ; ,  V;l) - W(Ei.1, E i N - f l l ,  n ; ,  V;) (4) 

where ” denotes the configuration of the trial configurations and ’ denotes the old 
configuration. The new configuration is accepted with a probability P given by 

1 i f A W S 0  

exP( - PAW) if AW > 0. 
P = {  ( 5 )  

Fundamental thermodynamics states that, for a pure fluid, as the numbers of particles, 
temperature and volume are specified, there are no additional degrees of freedom 
and the pressure and chemical potential have a given (but generally unknown) value. 
Dividing the system is superfluous unless at the given conditions the system would 
separate into two phases. In such a case the formation of an (unfavourable) interface 
can be avoided in the Gibbs ensemble if the two coexisting phases are located in the two 
(separated) sub-systems. Calculating the densities in the two sub-systems yields the 
corresponding phase boundaries of the vapour-liquid coexistence curve at a given 
temperature, in one single simulation. 

3. Computational details 

We have performed the simulations in cycles, each cycle having three steps: a dis- 
placement step, a change in the volume and attempts to change the number of particles. 
In the displacement step every particle in box 1 is successively given a random dis- 
placement. The maximum displacement was chosen in such a way that the acceptance 
ratio was approximately 50%. The same procedure is repeated for box 2. 

The next step is an attempt to change the volume of box 1 by an amount AV, which 
results in the volume of box 2 changing by -AV. The maximum volume change is 
adjusted to give an acceptance ratio of approximately 50%. We calculated the energy 
change associated with this volume change utilising the scaling properties of the Lennard- 
Jones potential [19] and the quadrupolar potential. 

The final step of the cycle is a number, N,,, of attempts to insert a particle (we have 
used N,, = 0.5N). Before each attempt it is decided at random which box will receive a 
particle. 

The Lennard-Jones potential was truncated at half the box size and the usual long tail 
corrections were applied. For each simulation we performed at least 2000 equilibration 
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cycles for N = 216 and 1000 cycles for N = 512. The number of production cycles 
are given in table 1. Most simulations were performed using 216 particles. The N- 
dependence was studied by performing a few simulations with 512 particles close to the 
critical point and at lower temperatures, but almost no N-dependence could be observed. 
The listed standard deviations were obtained by dividing each simulation into 10 sub- 
runs and calculating the block averages. 

In his original article Panagiotopoulos [8] suggested that from the interaction 
energies, calculated during the exchange step the chemical potential can be obtained 
using the Widom expression. The Widom expression [20], however, is strictly valid only 
in the N ,  V ,  T ensemble. Smit and Frenkel [17] have derived an expression for the 
chemical potential applicable to the Gibbs ensemble: 

p;  = p j  + 3kBTln  A = - kgT ln ( [V , / (n i  + l ) ]  e-pAu:) (6) 

where subscript i indicates box 1 or 2 and AUT is the test particle energy. Note that this 
expression becomes identical to the Widom expression when the number of particles is 
large and the fluctuations in the density can be neglected [ 171. We have used this equation 
for the calculation of the chemical potential. 

4. Results and discussion 

In table 1, a summary of the results for the simulations performed is presented for various 
quadrupolar Lennard-Jones fluids. The results for the pure Lennard-Jones fluid (Q** = 
0) are in close agreement with the results obtained by Panagiotopoulos [8]. In figure 1 
we have plotted the vapour-liquid coexistence curves for various quadrupolar strengths. 
In figure l(c) the results of Shing and Gubbins [4] are compared with our results for 
(e** = 2). This comparison shows that at low temperatures the results from the Gibbs 
ensemble are in very good agreement with the results from Shing and Gubbins, which 
were obtained from calculations of the chemical potentials using test particle methods. 
At temperatures close to the critical point our results differ from the results by Shing 
and Gubbins. 

We have used these vapour-liquid equilibrium data to estimate the critical tem- 
peratures and densities of the fluids. For this purpose we have fitted our results to the 
law of rectilinear diameters [21] 

(p r  + p,*) /2 = p,* + A(T* - T,*)  (7) 
where p* (=  pa3) is the reduced density, T*( = kgT/E) is the reduced temperature and 
p: and Td are respectively the reduced critical density and temperature. In [l8] it is 
shown that, due to finite size effects which are specific to the Gibbs ensemble, the 
coexistence of the vapour-liquid cannot be observed below the critical temperature. 
Therefore, the highest temperature at which the coexistence can be observed in the 
Gibbs ensemble is not a proper estimate of the critical temperature of the system. In 
order to estimate the critical temperature we have also fitted our results to the scaling 
law for the density [21] 

p: - pp* = B(T* - T,*)p (8) 
where /3 is the critical exponent ( p  = 0.32). Note that this scaling law is strictly valid 
only close to the critical temperature and should be corrected at lower temperatures. 
However, due to the inaccuracy of our data and due to the relatively small number of 
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Figure 1. Vapour-liquidequilibrium result sf orvarious quadrupolar strengths ( a )  Q** = 1.0, 
( b )  Q** = 1.5, (c) Q** = 2.0, and (d )  Q*'= 2.5. T* ( = k B T / & )  is the reduced temperature 
and p* (= po3) is the reduced density. The points are the results obtained by Monte Carlo 
simulations in the Gibbs ensemble. The lines are fits of equation ( 7 )  through the 'rectilinear' 
points and of (8) through the vapour-liquid points. Note that in (c) the broken curve gives 
the results of the Monte Carlo simulations of Shing and Gubbins for N = 108 [4]. A :  density 
gas phase; V: density liquid phase; 0: rectilinear law; 0: estimated critical point. 

Table 2. Estimates of the critical temperature 
drupolar strengths Q*2.  The number in parentheses indicates the accuracy as in table l .  

and critical density p :  for various qua- 

0.0 1.31 0.31 [18] 
1.0 1.60(2) 0.34( 2) 
1.5 1.89( 2) 0.36(2) 
2.0 2.25 (2) 0.38(2) 
2.5 2.62( 3) 0.41 (3) 

data, including these higher order terms produces no significant improvement of the fit. 
Furthermore, the results for the critical density and critical temperature appear to be 
insensitive, The results of these fits are shown in figure 1. The results for the critical 
temperature and density are listed in table 2. 

Shing and Gubbins [4] obtained for Q*2 = 2.0 as estimates for the critical points 
T: = 2.38, p: = 0.40 for N = 32 and T: = 2.33, p: = 0.39 for N = 108. As we have 
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used more particles ( N  = 216 and close to the critical point N = 512) we obtained a lower 
critical temperature due to the reduced finite size effects. 

Summarising, in this article we have demonstrated that Monte Carlo simulations in 
the Gibbs ensemble can be applied successfully to study the vapour-liquid equilibria of 
a quadrupolar Lennard-Jones fluid. The results for the pure Lennard-Jones fluid and 
for the quadrupolar Lennard-Jones fluid (for Q** = 2.0) are in good agreement with 
data in the available literature. 

Note added in proof. After the completion of this work, reference [22] came to our attention, in which the 
phase behaviour of quadrupolar Lennard-Jones fluids is studied using perturbation theory and Monte Carlo- 
Gibbs ensemble calculations. The results of Stapleton et a1 [22] are in excellent agreement with the results 
presented here for Q** = 1 .O and 2.0. The fact that twocompletely independent studies show such anexcellent 
agreement is an important demonstration of the reliability of this new simulation technique. 

Our results differ in a few aspects from those of Stapleton e f  al. Although we obtained for Q*2 = 2.0 the 
same critical temperatures, we have calculated a slightly higher critical density. Furthermore, we observed 
that the critical density increases systematically as the quadrupolar strength increases. Another aspect is that 
we have used a different expression for the chemical potential. In reference [17] it is shown that for a pure 
Lennard-Jones fluid for a small number of particles ( N  < 100) the results for chemical potentials as obtained 
by these two formulae show systematic differences, for a larger number of particles this difference turned out 
to be negligible. Comparison of our results for the chemical potential with the results of Stapleton et a1 also 
show no significant differences, as can be expected because in both studies the number of particles is greater 
than 100. 
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